Metric Spaces and Topology
Lecture 13

Cantor-Bendixson theonear. Polish spaces have the PSP. In particular, Polish spaces satisfy the continuum hypothesis.
In fact, X unignely decomposes into a disjoint union $P \cup U$ of a perfect closed space $P\left(\right.$ so if $\left.P \neq \emptyset, 2^{N} c_{s} P\right)$ and a ctbl open l.
Thoughts. For example:
Here $P=\varnothing \varnothing$

$$
u=x .
$$

Another example:

Proof. We remove all ctbl open cots tron X. To se Kt their union is still ctol), recall that X is $2^{\text {ad }}$ ch,
fix a dtpl baxis $\left\{u_{a}\right\}_{u \in N}$ ared let $\left.U:=U\right\} U_{u}$ U_{6} is ctbl\}. Then U is $\left.(H)\right|^{\text {ogen }}$ leing a athl mion of $($ thl open sets. let $P:=X \backslash U$, s. P is closed. It renais to sha the P is perfect. Let $V \leq P$ be relatively open al soceepty. Then $\exists \mathrm{open} V^{\prime} \leq X$ in X int. $V=V^{\prime} \cap P=$

$X=V^{\prime} \backslash U$. If V wathined ools one elenent, V^{\prime} would be ctbl, so we would hace cemoved it (wly? berse it's a wion of cthl basic open sets). Tans, V and wodnin uncthls-mang eleventr.

HWW Discass Canfor-Bendixson cank al baild a closed subsepace of $2^{\mathbb{N}}$ of rank $n \in \mathbb{N}$.
HW Well-ordered stricth iscreasiong oper sets.
Cor. All dosed subsets of ang perted Polish space (e.g. \mathbb{R}) satists the PSP.

Recall from the optional homemork seestion lut evely

Gs sebuet of a Polish atric vace is also Polish up to suitching A a egnivalent netric. Dus, cis subsets also have the PSP. With a bit of Descaiptive Set Theory, ie can slo Int all Bocel subeets have the PSP. It san be shorn that actinmous inages of Boed etes also have the PSP, hovever, whethen or not thein coyplements have the PSP is inclependect of ZFC.

Topological Measure (= Baire Categorg)
Noutere lense sets (knop) let (X, d) be retric space (although all wations belor uake sense is a topological space). A set $S \leq X$ is call sonamure donse if it is clanse in some wone-pty gron set $U \leq X$, i.e. $S \cap U$ is clense in U. Othermise, we say int S is workene clease (n.d.).

Prop. For a sel $S \subseteq X$, TFAE:
(1) S is u.d.
(2) \forall woneagty open $(1, \exists$ nonegty opon $V \subseteq U$ af $S A V=\varnothing$.
(3) $\overline{5}$ is u.d.
(4) $\overline{\bar{S}}$ has eupts intecioc.

Proof. (1) $\Rightarrow(2)$. This is jest unravelion the lefinition of u.d.
$(3) \Rightarrow(1)$ Trivial.
(2) $\Rightarrow(3), \forall$ ope $U \neq \emptyset$ 习 open $V \neq \emptyset$ s.t. $s \cap V=\varnothing$, but then $\bar{s} \cap V=\varnothing$ by the clef of closere.
$(3) \Rightarrow(4)$. This is also trivial since a set is clense in its intecioc.
$(4) \Rightarrow(3)$. Suppose \bar{s} is clense in sere oper set U.
 Den $U \leq \bar{s}$ hence $U \varepsilon \sin (s)=\varnothing$, so $l=\varnothing$.

Cor. (a) A dosed sut is u.d. \Leftrightarrow if has ϕ interior.
(b) Ungiade: a out is u.d \Leftrightarrow if's cantained in a losed ut of \varnothing interion.

Prop N.d. sets form an ideal, i.e. Shey ane dosed uncler subsets al fisite unions.
Proot. For fimite wious, we jast wed to prove the a union of two u.d. sets is n.d. (becure of indaction), HW

Exanples. - A singleton $\{x\rangle$ is a pertect X is a.d. thus also, any finte set in a perfeet X is uel.

- The grapth of any coorinnous fuction $f:(0,1) \rightarrow \mathbb{R}$ insicle \mathbb{R}^{2}. This is beose sich graphs are losed in $(0,1) \times \mathbb{R}$
 (HW problen) ad thes have enpty inderior (the x-fibers ane singletons),

$$
\text { o } X=\underbrace{}_{0}=\left\{0^{n} 1^{\infty}: n \in \mathbb{N}\right\} \text {. }
$$

hich las eupty isterioer.

- In $\mathbb{N}^{\mathbb{N}}$, the set $x:=n^{\mathbb{N}}$ for a fixed $u \in \mathbb{N}$. this is losed (n ot being is it is nituessed hy ive coordinate) al has \varnothing isterior loper cyliceless coutair unbded segneaces).

D-truri exagles nonseptrable wet ic spaces: O The space $B(X, Y)$ of bld faction, for X infinite al $|Y| \geqslant 2$, with the unifind. In particalar, $l_{\infty}(\mathbb{N}):=B(\mathbb{N}, \mathbb{R})=$ the space of bold seque.
$\forall\left(x_{n}\right),\left(y_{n}\right) \in l_{\infty}(\mathbb{N}), \quad \ell_{n}\left(\left(x_{n}\right),\left|y_{n}\right|\right)=\sup _{n \in \mathbb{N}}\left|x_{n}-y_{n}\right|$.
$\forall\left(x_{n}\right),\left(y_{n}\right) \in 2^{\mathbb{N}} \subseteq l_{\infty}(\mathbb{N})$,
$\ell\left(\left(x_{n}\right),\left(y_{n}\right)\right)=1 \Leftrightarrow\left(x_{n}\right) \neq\left(y_{n}\right)$, so we have a contianm inbert of $\quad(\alpha(N)$ of pailuise distasee ove elecuents.

Meagresets. We saw WA n.d. sets are boed nubs finite unions, bat clearly wat under ctll unious:

Exyple. $\mathbb{Q}=\bigcup\{q\}$ is everywhere cleuse in \mathbb{R}, hile each siagleton is n.d.

Det. A smbset of a wetric space is called mengre (Mamy) it it's a ctbl wion of u.d. seth.

Examples. $\circ \mathbb{Q}$ is \mathbb{R} is neagre.

- $Q:=\left\{\omega D^{\infty}: \omega \in \mathbb{N}^{<N}\right\}$
- $\quad X:=\bigcup_{n \in \mathbb{N}} \mathbb{N}^{N}$ is meagce in $\mathbb{N}^{\mathbb{N}}$.
X is the set of all boucded \mathbb{N}-valued segreeces.

- In $C([0,1], \mathbb{R})$ with the wiforn wetric, the set of all somewhere differentiable fucchios (differentiable at least at one point) is meagre.

Warning, A at $S \leq X$ can be wedge in X bat nonneagre in a subspace $Y \in X$, ce. SחY is nonneager in Y. Eng. $\mathbb{R} \subseteq \mathbb{R}^{2}$ is neagge in \mathbb{R}^{2} but $\mathbb{R} \subseteq \mathbb{R}$ is wonneagle (as will be i-plied by Bare (ate gory thereat). Also, 103 in \mathbb{R} is u.d. bat 403 in \mathbb{Z} is open and non eagre.

Example of a separable but not ad abl topological space.
$X=\mathbb{R}$ lat with the following topology:

The basis of this top is the set $\{0\}$ and sets of the from $\{0, r\}$ for each $r \in \mathbb{R} \backslash\{0\}$. Then $\{0\}$ is dense, so X is separable, bat ills int 2^{-d} the bane each out $\{0, r\}$ wald need 60 be in every basis.

